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ON DENTABILITY AND THE 
BISHOP-PHELPS PROPERTY 

BY 

J. B O U R G A I N  

ABSTRACT 

It is shown that for Banach spaces the R adon -Nikodym property and the  

Bishop-Phelps  property are equivalent.  Using similar techniques,  we prove that 
if C is a bounded,  closed and convex subset of a Banach space such that every 
nonempty  subset of C is dentable,  then the strongly exposing functionals of C 

form a dense  G~-subset of the dual, 

Preliminaries 

All Banach spaces are assumed to be real Banach spaces. Let X be a Banach 

space with dual X'. For sets A C X, let c(A) and g(A)  denote the convex hull 

and closed convex hull, respectively. If x E X  and e >0 ,  then B(x,e)= 

{y I[x-yll<e}. 
A subset A of X is said to be dentable if for every e > 0 there exists a point 

x ~ A such that xff e(A\B(x, e)). 
We will say that X is a dentable Banach space if every nonempty, bounded 

subset of X is dentable. 

A Banach space X has the Radon-Nikodym property (RNP) provided for 

every measure space (f~, X, tz ) with/z (f~) < oo, and every #-cont inuous measure 

F: X---~ X of finite variation, there exists a Bochner integrable function [: fl--* X 

such that F(E) = fEfdtz for every E ~ Y.,. 

The notion of dentability was introduced by M. A. Rief[el, who also proved 

that dentable Banach spaces have RNP [91 . The equivalence of the two 

properties was shown by W. J. Davis and R. R. Phelps [2] and simultaneously by 

R. E. Huff [41. 

If Y is a Banach space, let Le(X, Y) be the Banach space of all bounded linear 

operators from the Banach space X into the Banach space Y. The norm in 

~ ( X ,  Y) is the usual operator  norm. Suppose T E ~ (X ,  Y) and B a nonempty 

and bounded subset of X, then we take N(T,B)=sup{[]Tx[I;x E B}. A 
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nonempty,  bounded and closed subset B of X is said to possess the 

Bishop-Phelps property whenever given any Banach space Y and any operator  

T C ~ ( X ,  Y), there is an approximating sequence (T~)~ in ~ (X ,  Y), where each 

T~ achieves its max norm N(T~,B) on B. We will say that X has the 

Bishop-Phelps property if every bounded, closed and absolutely convex subset 

of X has the Bishop-Phelps property. 

PROPOSITION 1. Let C be a nonempty, separable, bounded, closed and convex 
subset of X. If C has the Bishop-Phelps property, then C is dentable. 

PROOF. Clearly we can assume that C is contained in the unit ball of X. 

Suppose that C is not dentable. Then, applying a result of Huff and Morris [5], 

there exists some e > 0  so that C=6(C\D),  for each D C X  with an e- 

convering. Let Z be the linear span of C and (zp)p a dense sequence in Z. For 

x E X we define 

III x IIl=--Ilxll=+ ~ ~ (dist(x, Rz,))  2. 
p=0 

Clearly III III is an equivalent norm on X. Consider the identity operator  

l : X ,  II II--'X, III III. Since C C X has the Bishop-Phelps property, there 

exists an operator  T: X, II I1~ x, III III achieving its max norm N(T, C) on C 

and satisfying III-Tll<=e/4. Take x E C with x ~ 0  and III Tx III = N(T,C). 
Since x E Z, there exists some q E N so that [Ix - zq II--- e/4. If u t , . . . ,  ud is a 

finite e/8-net in Rzq r) B(0, 1 + e), then we find that 

Dq = {y @ C; dist (y, Rzq)<7--8 } c U~lB(U,,e) 

and therefore has an e-covering. Hence C = ~(C\Dq) and therefore 

2111 Tx III =sup{Ill Tx§ III; yEf\Dq}.  

Let (y,),, be a sequence in C\Dq satisfying 2 III Tx III = l imn~ III Tx + Ty. III. 

From the definition of III 111 and the properties of the lLnorm, it follows easily 

that dist (Tx, RZq) = l imn~ dist (Ty,, Rzq). 
The fact that dist (Tx, RZq) <= ]1Tx - x II + dist (x, Rzq) -< e/4 + e/4 = e/2 and 

dist (Ty., Rzq) = dist (y,, Rzq) -II Tyo - yo II--> 7e/8- e/4 = 5e/8 yields the re- 

quired contradiction. 

Using a result of [5] and the fact that dentability is separably determined [7], 

we obtain immediately: 

COROLLARY 2. A Banach space with the Bishop-Phelps property has RNP. 
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We wilt now pass to the proof of the converse. 

LEMMA 3. Let (V . ) .  be a sequence of nonempty sets in X satisfying the 

following condition : 

There is an ~ > 0 and a K > 0 such that for each z E c (V, )  and each p E X, 

dist (z, c(V,+l\B(p, e))) < K2-". Then the set A = f')~=0 Uj~.c(V,)  is nonempty 

and not dentable. 

PROOF. First, we remark that c ( V , ) C A  + B ( 0 ,  K2-"*'). Indeed, if z 

c(V, ) ,  then there exists a sequence (zj)j~. such that z , - - z ,  z i ~ c ( V , )  and 

II z ,  - z ,+ ,  Jl < K 2- ' .  

Clearly (z,),=>, converges to some point a E A and fur thermore II z - a  [] < 

K2 -"+l" 

Now we show that if x ~ A, then x E e (A \B(x , e /2 ) ) .  Let x E A and let 

0 <  r < e. Take  n E N such that K2 -"+=< r. There is some j > n and some 

z e c ( g )  satisfying ]Ix - z ]] < r/2. 

Because dist (z, c(Vj+,\B(x, e ) ) ) <  K2 ' and 

it follows that dist (z, c ( A i B ( x ,  e/2))) < K2 -j+' < r/2 and hence 

d i s t ( x , c ( A i B ( x , e / 2 ) ) ) < r .  Since r > 0  can be taken arbitrarily small, 

x E ~ (A \ B ( x ,  e/2)). Thus A is not dentable. 

LEMMA 4. Let B be a nonempty, closed and absolutely convex subset of X, 

contained in the unit ball. Assume that every nonempty subset of B is dentable. Let 

Y be a Banach space. Let e > 0 be given and define 

A, = { T E  ~LP(X, Y); S(T, rl) C B(p, e ) U  B ( - p ,  e) 

for some 71>0 and p E X},  

where S(T, 77) = {x ~ B; tl Tx [[ >= N(T, B ) -  -q}. Then A~ is dense in ~ ( X ,  Y).  

Moreover, if 8 > 0 and S @ ~ ( X ,  Y),  there is T E A ,  such that II S - T II < ~ and 

S - T is finite rank. 

PROOF. Assume e > 0 ,  0 <  8 < ~ and S E ~ ( X ,  Y). Clearly we can take 

N ( S , B ) > O  and hence N ( S , B )  = 1. Now suppose that for every T E  ~ ( X ,  Y) 

satisfying ]IS - T[[ < 8 and S - T finite rank, we have T ~  A,. For each n E N, 

let V, be the set of those x ~ B for which there exists T E 37(X, Y) such that 

IITxll>= N(T,  B ) -  4-"8 2, IIS - TJI= ~(1 - 2  ") and S - T finite rank. 
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We claim that if z E V, and p E X ,  then d i s t ( z , c (V , . , \B (p , e ) ) )< K2  -~, 
where K = 266. Suppose dist (z, c(V.+~\B(p, e)))>= K2-". Since D = 

V.. , \ (B(p,  e) U B ( -  p, e)) is symmetric, there exists f E X '  satisfying I l f l l  = 1 

and f ( z  ) >-_ sup I f (D)I  + K 2-". 
Because z E V,, there is T E ~ ( X ,  Y) such that II Tz II -> N(T, B)- 4-"a 2, 

IIS-TIt<=a(1-2 -") and S - T  is finite rank. Thus ~ < N ( T , B ) < 2  and 

[[ Tz  [I_- > '  . 

Let 7" E ~(X, Y) be the operator given by 

7"x = Tx + 2-"-26[(x)Tz. 

Then It T -  7"tt_< 2 -" '6 and hence I I S -  7"11_- < 6 ( 1 -  2-"- ').  Obviously S -  T is 

still a finite rank operator.  By hypothesis T ~  A, and thus there is some x E B 

with x ~ B ( p , e ) U B ( - p , e )  and [IT"xlI>-_N(~,B)-4-"-'a ~. Clearly x ~  V,§ 

and thus x E D. 

But 11Tx 11 + 2 -"-z6 l f (x  )ll Tz It >= II Tz 1t- 4-"-'6= implying 

(1 + 2 "-~61f(x)l)llTz ll--> (I + 2-"-=6f(z))ll Tz l l -  24 -"8=. 

Therefore  [f(x)l>=f(z)-2-"+56, which contadicts f (z)>=Jf(x) l+K2 -". This 

proves the claim. 

From the claim, it follows that the sequence (V,). of nonempty sets in X, e > 0 

and K > 0  satisfy the condition of Lemma 3. Thus A = I"1,~=0 Ui~ ,c (Vi )  is 

nonempty and not dentable. The fact that A C B yields the final contradiction. 

We introduce the following definition. Let B be a nonempty, bounded, closed 

and absolutely convex subset of X. Let Y be a Banach space and T E ~ ( X ,  Y). 

We will say that T is an absolutely strongly exposing operator  for the set B if 

there exists some point x in B such that every sequence (x,) ,  in B satisfying 

N ( T , B ) =  lim,~=[[Tx,[[ has a subsequence coverging to x or to - x .  Using a 

compactness argument, we observe that T E LC(X, Y) is an absolutely strongly 

exposing operator  for the set B if and only if T E A,, for every e > 0, where A, 

is defined as in Lemma 4. Obviously such an operator  T achieves its 

max norm N(T, B)  on B. 

THEOREM 5. Let B be a nonempty, bounded, closed and absolutely convex 

subset of X. Assume that every nonempty subset of B is dentable. Then for any 

Banach space Y the set A of the absolutely strongly exposing operators T E 

.LP(X, Y) for the set B is a dense G~-subset of 3?(X, Y). In fact, if S E &P(X, Y)  
and 6 > O, there is T E A such that II S - TII ---- 6 and S - T is a compact operator. 
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PROOF. Clearly B can be taken in the unit ball of X. For each n ~ N*, we 

consider the subset At/. of ~ ( X ,  Y), which is open. 

Indeed, assume T E A ~/. and let S(T, r l) C B (p, 1/n) U B ( - p, 1/n) for some 

rt > 0  and some p @X. Then, if U E ~ ( X ,  Y)  and 11 T - U I ] <  r//3, we have 

S(U, r//3) C S(T, 77) and therefore U E A , , .  

Since A = N , A , , ,  it follows from Lemma 4 that A is a dense G8 in 5r Y). 

Now assume S E ~ ( X , Y )  and 6 > 0 .  Let ~ be the set of the compact 

operators C in Zg(X, Y) such that II c iI -< & Then S + q~ is closed in ~ (X ,  Y) and 

again from Lemma 4 we obtain that (S + q~) f-I At/. is dense in S + ~ for each 

n E N*. Therefore  A intersects S + q~ and every operator  T in the intersection 

verifies the required properties. 

COROLLARY 6. Let B be a nonempty, bounded, closed and absolutely convex 

subset of X. Assume that every nonempty subset of B is dentable. Then for any 

Banach space Y the set of those operators T E ~(X ,  Y) which attain their 

max norm N(T, B)  on B is dense in ~(X ,  Y). Hence B has the Bishop-Phelps 

property. 

Finally, Corollary 2 and Corollary 6 together give: 

THEOREM 7. A Banach spaceX has the Bishop-Phelps property if and only if 

it has RNP. 

We end with a result on the strongly exposing functionals of a convex set. Let 

C be a convex set in the Banach space X, then we will say that the point x E C is 

strongly exposed by x * E X '  if x *(x) = max x *(C) and if II x - x, II--~ 0 whenever 

each x, is in C and x *(x,)--~ x *(x). It was shown by R. R. Phelps [8] that if X is 

an RNP-space and C a bounded, closed and convex subset of X, then the 

functionals that strongly expose some point of C form a dense G~-subset of the 

dual X'. 

The following theorem is stronger than Phelps' result and it also generalizes 

the well-known Troyanski-Lindenstrauss result on weakly compact convex 

sets [10]. 

THEOREM 8. Let C be a nonempty, bounded, closed and convex subset of the 

Banach space X. Assume that every nonempty subset of C is dentable. Then the 

strongly exposing functionals of C form a dense G~-subset of X'.  

Using the same argument as in Theorem 5, Theorem 8 follows immediately 

from a slight modification of Lemma 4: 
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LEMMA 4'. F o r e > O ,  let A ~ = { x * E X ' , S ( x * , ~ ? ) C B ( p , e )  for some r / > 0  

and p ~ X},  where S (x *, r 1 ) = {x E C; x *(x ) >-_ sup x *(C) - rt }. Then A ,  is dense 

in X' .  

The proof of Lemma 4' is essentially the same as that of Lemma 4. We give an 

outline of it. 

Assume C contained in the unit ball of X , O < 6 < ~ , x * E X '  and 

sup x *(C) = 1. 

Now suppose that for every y * U  X'  satisfying ] I x * - y * ] ] <  6 we have 

y * ~  A,. 

For each n E N, let V, be the set of those x E C for which there exists y * E X '  

such that y*(x)_-> sup y *(C) - 4-"6: and I[x* - y*ll~ ,~(1-2-"). 
The only thing to show is that if z E V .  and p E X ,  then 

dist (z, c(V,+,\B(p, e ) ) ) <  K2-", where K = 266. If not, then we consider the set 

D = V.+,\B (p, e) and take f E X '  satisfying II f II = 1 and f ( z )  >- sup f ( D )  + r 2-". 

Because z C V . ,  there is y * E X '  such that y*(z ) ->_supy*(C) -4 -"62  and 

f /x*-y ' / l_-< 6 ( 1 - 2 - " ) .  Thus �89 supy*(C)-<  2 and y*(z)=>�88 

Let z * ~  X'  be given by 

z *(x) = y *(x)+ 2-"-26f(x)y *(z). 

Then [ [ z * - y * [ I - 2 - "  '6 and hence I ]x* - z* l [<-6(1 -2 -" - ' ) .  By hypothesis 

z*~_A~ and thus there is some x ~ C  with x ~ B ( p , e )  and z*(x)  >- _ 

sup z *( C ) -  4-"-16 z. 

Clearly x ~ V.., and thus x ~ D. But 

y *(x) + 2-"-26f(x)y *(z) >_- z *(z) - 4-"-~6: 

implying (1 + 2-"-26/(x))y *(z) -> (1 + 2-"-26f(z))y *(z) - 24-"62. Therefore  

f ( x )  >= f ( z )  - 2-" +s& which contradicts f ( z )  >-_- f ( x )  + K 2 ". 
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