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ON DENTABILITY AND THE
BISHOP-PHELPS PROPERTY

BY
J. BOURGAIN

ABSTRACT

It is shown that for Banach spaces the Radon-Nikodym property and the
Bishop-Phelps property are equivalent. Using similar techniques. we prove that
if C is a bounded, closed and convex subset of a Banach space such that every
nonempty subset of C is dentable, then the strongly exposing functionals of C
form a dense Gs-subset of the dual.

Preliminaries

All Banach spaces are assumed fo be real Banach spaces. Let X be a Banach
space with dual X'. For sets A C X, let ¢(A) and ¢(A) denote the convex hull
and closed convex hull, respectively. If x € X and ¢ >0, then B(x,e)=
yexX;lx-yl<e}h

A subset A of X is said to be dentable if for every £ >0 there exists a point
x € A such that x& ¢(A\B(x, ¢)).

We will say that X is a dentable Banach space if every nonempty, bounded
subset of X is dentable.

A Banach space X has the Radon-Nikodym property (RNP) provided for
every measure space (§2,2, u) with u(Q) <, and every w-continuous measure
F:2— X of finite variation, there exists a Bochner integrable function f: Q — X
such that F(E)= [¢fdu for every E €3.

The notion of dentability was introduced by M. A. Rieffel, who also proved
that dentable Banach spaces have RNP [9]. The equivalence of the two
properties was shown by W. J. Davis and R. R. Phelps [2] and simultaneously by
R. E. Huff [4].

If Y is a Banach space, let £(X, Y) be the Banach space of all bounded linear
operators from the Banach space X into the Banach space Y. The norm in
Z(X, Y) is the usual operator norm. Suppose T € #(X, Y) and B a nonempty
and bounded subset of X, then we take N(T,B)=sup{|Tx|;x € B}. A
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nonempty, bounded and closed subset B of X is said to possess the
Bishop-Phelps property whenever given any Banach space Y and any operator
T € £(X, Y), there is an approximating sequence (T, ), in £(X, Y), where each
T. achieves its max norm N(T, B) on B. We will say that X has the
Bishop-Phelps property if every bounded, closed and absolutely convex subset
of X has the Bishop-Phelps property.

ProrosiTioN 1. Let C be a nonempty, separable, bounded, closed and convex
subset of X. If C has the Bishop-Phelps property, then C is dentable.

Proor. Clearly we can assume that C is contained in the unit ball of X.
Suppose that C is not dentable. Then, applying a result of Huff and Morris [5],
there exists some ¢ >0 so that C=¢(C\D), for each D C X with an &-
convering. Let Z be the linear span of C and (z,), a dense sequence in Z. For
x € X we define

o 1 .
Ilx 7 =lxF+ % 5 @ist(xRz)Y.

Clearly [| || is an equivalent norm on X. Consider the identity operator
X Il=X, || |l. Since C CX has the Bishop-Phelps property, there
exists an operator T: X,|| |= X, || || achieving its max norm N(T,C) on C
and satisfying || I — T || < ¢/4. Take x € C with x#0 and || Tx || = N(T, C).
Since x € Z, there exists some q EN so that |[x —z,|=&/4. If uy,-- -, uqs is a
finite ¢£/8-net in Rz, N B(0, 1+ ¢), then we find that

D, = {y € C; dist (y,qu)<77:} c UL, B(u, ¢)

and therefore has an e-covering. Hence C = ¢(C\D,) and therefore
2|l Tx || = sup{{ll Tx + Ty [l; y € C\D,}.

Let (y.)~ be a sequence in C\D, satisfying 2 || Tx || = lim.—. || Tx + Ty. |||.
From the definition of || ||| and the properties of the [*-norm, it follows easily
that dist (Tx,Rz,) = lim,_,.dist (Ty., Rz,).

The fact that dist (Tx,Rz,)=||Tx — x|+ dist (x,Rz,)=e/4+ e/4=¢/2 and
dist (Tyn, Rz;) = dist (ym, Rz,) = | Ty. — y. || = 7€ /8 — €/4 = 5¢/8 yields the re-
quired contradiction.

Using a result of [5] and the fact that dentability is separably determined [7],
we obtain immediately:

CoROLLARY 2. A Banach space with the Bishop-Phelps property has RNP.
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We will now pass to the proof of the converse.

LemMMa 3. Let (V,). be a sequence of nonempty sets in X satisfying the
following condition:

There is an € >0 and a « >0 such that for each z € c(V.)) and each p € X,
dist (z, c(V,...\B(p, €))) < k27" Then the set A = N7y U;=.c(V,) is nonempty
and not dentable.

Proor. First, we remark that ¢(V,)CA + B(0,x2™""). Indeed, if z €
¢(V.), then there exists a sequence (z;);=. such that z, =2z 2, € ¢(V,) and
[ 2; = zja || < k270

Clearly (z;);=» converges to some point a € A and furthermore ||z —a | <
K27

Now we show that if x € A, then x E ¢(A\B(x,¢/2)). Let x € A and let
0<7<e Take n €N such that k27"**< 1. There is some j=n and some
z € ¢(V,) satisfying ||x — z|| < 7/2.

Because dist (z,c(V;.\B(x, €)))< «x2"' and

V,.\B(x,€) C(A + B(0, k27 )\B(x, €) C <A\B<x,§)) +B(0,x27),

it  follows that dist(z,c(A\B(x,£/2)))<«27"'<7/2 and hence
dist (x,c(A\B(x, €/2)))<r. Since 7>0 can be taken arbitrarily small,
x € ¢(A\B(x, £/2)). Thus A is not dentable.

LemMma 4. Let B be a nonempty, closed and absolutely convex subset of X,
contained in the unit ball. Assume that every nonempty subset of B is dentable. Let
Y be a Banach space. Let € >0 be given and define

A ={TEXL(X YY), S(T,n)CB(p,e)UB{—-p,¢)
for some 7n>0 and pe€ X},

where S(T,n)={x €B; || Tx ||= N(T,B)—n}. Then A. is dense in L(X,Y).
Moreover, if 5 >0 and S € £(X, Y), there is T € A, such that |S — T || < & and
S — T is finite rank.

Proor. Assume £ >0, 0<8 <} and S€ L(X,Y). Clearly we can take
N(S,B)>0 and hence N(S, B)=1. Now suppose that for every T € £(X,Y)
satisfying ||S — T||< & and S — T finite rank, we have TZ A.. For each n €N,
let V, be the set of those x € B for which there exists 7€ £(X, Y) such that
[Tx||z N(T,B)-47"8% |S-T||=8(1-2") and S — T finite rank.
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We claim that if z €V, and p € X, then dist(z,c(V,.\B(p, £))<x27%
where  k =2°6. Suppose dist(z,c(V..\B(p,e)))=«x2™". Since D=
V.. \(B(p, €)U B(— p, £)) is symmetric, there exists f € X’ satisfying || f| =1
and f(z)Zsup|f(D)|+ k27"

Because z € V,, there is TE (X, Y) such that | Tz = N(T,B)—-47"8%,
[S-T|=8(1-2") and S—T is finite rank. Thus < N(T,B)<2 and
[Tz |z

Let T'€ £(X, Y) be the operator given by

Tx = Tx + 27" 8f(x) Tz.

Then | T~ T|=27"'6 and hence ||S — T||= 8(1-2"""). Obviously S ~ T is
still a finite rank operator. By hypothesis T& A, and thus there is some x € B
with x€ B(p,e)UB(-p,¢) and || Tx||z N(T,B)-4"""'6%. Clearly x € V,,,
and thus x € D.

But | Tx [ +27"7%8|f(x)| Tz |z || Tz | — 4™'6° implying

(1+27"728| f) | Tz | = (1+ 277285 (2)) | Tz | - 24776

Therefore [f(x)|= f(z)-27"**8, which contadicts f(z)=|f(x)|+ 2™ This
proves the claim.

From the claim, it follows that the sequence (V,). of nonempty setsin X, ¢ >0
and « >0 satisfy the condition of Lemma 3. Thus 4 =M, U ..c(V,) is
nonempty and not dentable. The fact that A C B yields the final contradiction.

We introduce the following definition. Let B be a nonempty, bounded, closed
and absolutely convex subset of X. Let Y be a Banach space and T € #(X, Y).
We will say that T is an absolutely strongly exposing operator for the set B if
there exists some point x in B such that every sequence (x,). in B satisfying
N(T, B) = lim, .|| Tx. | has a subsequence coverging to x or to —x. Using a
compactness argument, we observe that T € £(X, Y) is an absolutely strongly
exposing operator for the set B if and only if T € A,, for every £ > 0, where A,
is defined as in Lemma 4. Obviously such an operator T achieves its
max norm N(T, B) on B.

THEOREM 5. Let B be a nonempty, bounded, closed and absolutely convex
subset of X. Assume that every nonempty subset of B is dentable. Then for any
Banach space Y the set A of the absolutely strongly exposing operators T €
(X, Y) for the set B is a dense Gs-subset of £(X,Y). In fact, if S € $(X, Y)
and & >0, thereis T € A such that ||S — T| = 8 and S — T is a compact operator.
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Proor. Clearly B can be taken in the unit ball of X. For each n € N*, we
consider the subset A, of £(X,Y), which is open.

Indeed, assume T € Ay, and let S(T,n)CB(p,1/n)U B(— p,1/n) for some
17 >0 and some p € X. Then, if UE L(X,Y) and | T - U| < n/3, we have
S(U,n/3) CS(T,n) and therefore U € Ay,

Since A = [),A,,, it follows from Lemma 4 that A is a dense G; in F (X, Y).

Now assume S € £(X,Y) and 6 >0. Let ¢ be the set of the compact
operators C in £(X, Y) such that | C =< 8. Then S + ¢ is closed in £(X, Y) and
again from Lemma 4 we obtain that (S + ¢) N Ay. is dense in S + ¢ for each
n € N*. Therefore A intersects S + ¢ and every operator T in the intersection
verifies the required properties.

CoroLLARY 6. Let B be a nonempty, bounded, closed and absolutely convex
subset of X. Assume that every nonempty subset of B is dentable. Then for any
Banach space Y the set of those operators T € £(X,Y) which attain their
max norm N(T, B) on B is dense in £(X, Y). Hence B has the Bishop-Phelps

property.

Finally, Corollary 2 and Corollary 6 together give:

THEOREM 7. A Banach spaceX has the Bishop—Phelps property if and only if
it has RNP.

We end with a result on the strongly exposing functionals of a convex set. Let
C be a convex set in the Banach space X, then we will say that the point x € C is
strongly exposed by x* € X' if x *(x) = max x*(C)and if || x — x, || > 0 whenever
each x, isin C and x *(x.)— x *(x). It was shown by R. R. Phelps [8] that if X is
an RNP-space and C a bounded, closed and convex subset of X, then the
functionals that strongly expose some point of C form a dense G,-subset of the
dual X'

The following theorem is stronger than Phelps’ result and it also generalizes
the well-known Troyanski-Lindenstrauss result on weakly compact convex
sets [10].

THEOREM 8. Let C be a nonempty, bounded, closed and convex subset of the
Banach space X. Assume that every nonempty subset of C is dentable. Then the
strongly exposing functionals of C form a dense Gs-subset of X'.

Using the same argument as in Theorem 5, Theorem 8 follows immediately
from a slight modification of Lemma 4:
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LEMMA 4. For e >0, let A, ={x*€ X",S(x*,7)CB(p, &) for some n >0
and p € X}, where S(x*,n)={x € C;x*(x)Zsupx*(C)— n}. Then A, is dense
in X'.

The proof of Lemma 4’ is essentially the same as that of Lemma 4. We give an
outline of it.

Assume C contained in the unit ball of X,0<&<3x*€ X' and
supx *(C)=1.

Now suppose that for every y*€ X' satisfying |x* - y*||<& we have
y*E A..

For each n €N, let V, be the set of those x € C for which there exists y * € X'
such that y*(x)Zsupy*(C)—47"8% and ||x* - y*|[=8(1-27").

The only thing to show is that if z€V, and p€X, then
dist (z,c(V..\B(p, €))) < «27", where « = 2%8. If not, then we consider the set
D = V,.\B(p, £) and take f € X'satisfying || f | = 1 and f(z) =sup f(D)+«2™".
Because z € V,, there is y*& X’ such that y*(z)=supy*(C)—47"8° and
lx*—y*|=8(1—-2"). Thus ;=supy*(C)=2 and y*(z) 2.

Let z* € X' be given by

z¥(x) =y (x)+2778f(x)y *(2).

Then [|z*—y*[[=2™'6 and hence |[x*—z*||=8(1-27"""). By hypothesis
z*& A, and thus there is some x € C with xZ B(p,e) and z*(x)=
sup z ¥(C)—47""182.

Clearly x € V.., and thus x € D. But

yH(x)+ 27 (x)y *(2) 2 2% (2) - 47

implying  (1+2"728f(x))y*(z) = (1 +27"28f(2))y *(z)—247"8>.  Therefore
f(x)= f(z)—27"*"8, which contradicts f(z)= f(x)+ k2™
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