ON DENTABILITY AND THE BISHOP-PHELPS PROPERTY

BY

J. BOURGAIN

ABSTRACT

It is shown that for Banach spaces the Radon-Nikodym property and the Bishop-Phelps property are equivalent. Using similar techniques, we prove that if C is a bounded, closed and convex subset of a Banach space such that every nonempty subset of C is dentable, then the strongly exposing functionals of C form a dense G_8 -subset of the dual.

Preliminaries

All Banach spaces are assumed to be real Banach spaces. Let X be a Banach space with dual X'. For sets $A \subset X$, let c(A) and $\bar{c}(A)$ denote the convex hull and closed convex hull, respectively. If $x \in X$ and $\varepsilon > 0$, then $B(x, \varepsilon) = \{y \in X; ||x - y|| < \varepsilon\}$.

A subset A of X is said to be dentable if for every $\varepsilon > 0$ there exists a point $x \in A$ such that $x \notin \overline{c}(A \setminus B(x, \varepsilon))$.

We will say that X is a dentable Banach space if every nonempty, bounded subset of X is dentable.

A Banach space X has the Radon-Nikodym property (RNP) provided for every measure space (Ω, Σ, μ) with $\mu(\Omega) < \infty$, and every μ -continuous measure $F: \Sigma \to X$ of finite variation, there exists a Bochner integrable function $f: \Omega \to X$ such that $F(E) = \int_E f d\mu$ for every $E \in \Sigma$.

The notion of dentability was introduced by M. A. Rieffel, who also proved that dentable Banach spaces have RNP [9]. The equivalence of the two properties was shown by W. J. Davis and R. R. Phelps [2] and simultaneously by R. E. Huff [4].

If Y is a Banach space, let $\mathscr{L}(X, Y)$ be the Banach space of all bounded linear operators from the Banach space X into the Banach space Y. The norm in $\mathscr{L}(X, Y)$ is the usual operator norm. Suppose $T \in \mathscr{L}(X, Y)$ and B a nonempty and bounded subset of X, then we take $N(T, B) = \sup\{|| Tx ||; x \in B\}$. A

Received April 5, 1976 and in revised form October 20, 1976

J. BOURGAIN

nonempty, bounded and closed subset B of X is said to possess the Bishop-Phelps property whenever given any Banach space Y and any operator $T \in \mathcal{L}(X, Y)$, there is an approximating sequence $(T_n)_n$ in $\mathcal{L}(X, Y)$, where each T_n achieves its max norm $N(T_n, B)$ on B. We will say that X has the Bishop-Phelps property if every bounded, closed and absolutely convex subset of X has the Bishop-Phelps property.

PROPOSITION 1. Let C be a nonempty, separable, bounded, closed and convex subset of X. If C has the Bishop-Phelps property, then C is dentable.

PROOF. Clearly we can assume that C is contained in the unit ball of X. Suppose that C is not dentable. Then, applying a result of Huff and Morris [5], there exists some $\varepsilon > 0$ so that $C = \overline{c}(C \setminus D)$, for each $D \subset X$ with an ε -convering. Let Z be the linear span of C and $(z_p)_p$ a dense sequence in Z. For $x \in X$ we define

$$||| x |||^{2} = ||x||^{2} + \sum_{p=0}^{\infty} \frac{1}{2^{p}} (\operatorname{dist}(x, \mathbf{R}z_{p}))^{2}.$$

Clearly ||| ||| is an equivalent norm on X. Consider the identity operator $I: X, || || \to X, ||| |||$. Since $C \subset X$ has the Bishop-Phelps property, there exists an operator $T: X, || || \to X, ||| = X, |||$ achieving its max norm N(T, C) on C and satisfying $||I - T|| \le \varepsilon/4$. Take $x \in C$ with $x \ne 0$ and ||| Tx ||| = N(T, C). Since $x \in Z$, there exists some $q \in \mathbb{N}$ so that $||x - z_q|| \le \varepsilon/4$. If u_1, \dots, u_d is a finite $\varepsilon/8$ -net in $\mathbb{R}z_q \cap B(0, 1 + \varepsilon)$, then we find that

$$D_q = \left\{ y \in C; \text{ dist } (y, \mathbf{R}z_q) < \frac{7\varepsilon}{8} \right\} \subset \bigcup_{i=1}^d B(u_i, \varepsilon)$$

and therefore has an ε -covering. Hence $C = \overline{c}(C \setminus D_q)$ and therefore

$$2 ||| Tx ||| = \sup\{||| Tx + Ty |||; y \in C \setminus D_q\}.$$

Let $(y_n)_m$ be a sequence in $C \setminus D_q$ satisfying $2 \parallel Tx \parallel = \lim_{n \to \infty} \parallel Tx + Ty_n \parallel$. From the definition of $\parallel \parallel \parallel \parallel$ and the properties of the l^2 -norm, it follows easily that dist $(Tx, \mathbf{R}z_q) = \lim_{n \to \infty} \text{dist}(Ty_n, \mathbf{R}z_q)$.

The fact that dist $(Tx, \mathbf{R}z_q) \leq ||Tx - x|| + \text{dist}(x, \mathbf{R}z_q) \leq \varepsilon/4 + \varepsilon/4 = \varepsilon/2$ and dist $(Ty_n, \mathbf{R}z_q) \geq \text{dist}(y_n, \mathbf{R}z_q) - ||Ty_n - y_n|| \geq 7\varepsilon/8 - \varepsilon/4 = 5\varepsilon/8$ yields the required contradiction.

Using a result of [5] and the fact that dentability is separably determined [7], we obtain immediately:

COROLLARY 2. A Banach space with the Bishop-Phelps property has RNP.

We will now pass to the proof of the converse.

LEMMA 3. Let $(V_n)_n$ be a sequence of nonempty sets in X satisfying the following condition:

There is an $\varepsilon > 0$ and a $\kappa > 0$ such that for each $z \in c(V_n)$ and each $p \in X$, dist $(z, c(V_{n+1} \setminus B(p, \varepsilon))) < \kappa 2^{-n}$. Then the set $A = \bigcap_{n=0}^{\infty} \overline{\bigcup_{j \ge n} c(V_j)}$ is nonempty and not dentable.

PROOF. First, we remark that $c(V_n) \subset A + B(0, \kappa 2^{-n+1})$. Indeed, if $z \in c(V_n)$, then there exists a sequence $(z_i)_{i\geq n}$ such that $z_n = z, z_i \in c(V_i)$ and $||z_i - z_{i+1}|| < \kappa 2^{-i}$.

Clearly $(z_i)_{i \ge n}$ converges to some point $a \in A$ and furthermore $||z - a|| < \kappa 2^{-n+1}$.

Now we show that if $x \in A$, then $x \in \overline{c}(A \setminus B(x, \varepsilon/2))$. Let $x \in A$ and let $0 < \tau < \varepsilon$. Take $n \in \mathbb{N}$ such that $\kappa 2^{-n+2} < \tau$. There is some $j \ge n$ and some $z \in c(V_j)$ satisfying $||x - z|| < \tau/2$.

Because dist $(z, c(V_{j+1} \setminus B(x, \varepsilon))) < \kappa 2^{-j}$ and

$$V_{j+1} \setminus B(x,\varepsilon) \subset (A + B(0,\kappa 2^{-j})) \setminus B(x,\varepsilon) \subset \left(A \setminus B\left(x,\frac{\varepsilon}{2}\right)\right) + B(0,\kappa 2^{-j}),$$

it follows that dist $(z, c(A \setminus B(x, \varepsilon/2))) < \kappa 2^{-j+1} < \tau/2$ and hence dist $(x, c(A \setminus B(x, \varepsilon/2))) < \tau$. Since $\tau > 0$ can be taken arbitrarily small, $x \in \bar{c}(A \setminus B(x, \varepsilon/2))$. Thus A is not dentable.

LEMMA 4. Let B be a nonempty, closed and absolutely convex subset of X, contained in the unit ball. Assume that every nonempty subset of B is dentable. Let Y be a Banach space. Let $\varepsilon > 0$ be given and define

 $A_{\varepsilon} = \{T \in \mathcal{L}(X, Y); S(T, \eta) \subset B(p, \varepsilon) \cup B(-p, \varepsilon)$ for some $\eta > 0$ and $p \in X\},$

where $S(T, \eta) = \{x \in B; ||Tx|| \ge N(T, B) - \eta\}$. Then A_{ε} is dense in $\mathcal{L}(X, Y)$. Moreover, if $\delta > 0$ and $S \in \mathcal{L}(X, Y)$, there is $T \in A_{\varepsilon}$ such that $||S - T|| < \delta$ and S - T is finite rank.

PROOF. Assume $\varepsilon > 0$, $0 < \delta < \frac{1}{2}$ and $S \in \mathscr{L}(X, Y)$. Clearly we can take N(S, B) > 0 and hence N(S, B) = 1. Now suppose that for every $T \in \mathscr{L}(X, Y)$ satisfying $||S - T|| < \delta$ and S - T finite rank, we have $T \notin A_{\varepsilon}$. For each $n \in \mathbb{N}$, let V_n be the set of those $x \in B$ for which there exists $T \in \mathscr{L}(X, Y)$ such that $||Tx|| \ge N(T, B) - 4^{-n}\delta^2$, $||S - T|| \le \delta(1 - 2^{-n})$ and S - T finite rank.

We claim that if $z \in V_n$ and $p \in X$, then dist $(z, c(V_{n+1} \setminus B(p, \varepsilon))) < \kappa 2^{-n}$, where $\kappa = 2^6 \delta$. Suppose dist $(z, c(V_{n+1} \setminus B(p, \varepsilon))) \ge \kappa 2^{-n}$. Since $D = V_{n+1} \setminus (B(p, \varepsilon) \cup B(-p, \varepsilon))$ is symmetric, there exists $f \in X'$ satisfying ||f|| = 1and $f(z) \ge \sup |f(D)| + \kappa 2^{-n}$.

Because $z \in V_n$, there is $T \in \mathscr{L}(X, Y)$ such that $||Tz|| \ge N(T, B) - 4^{-n}\delta^2$, $||S - T|| \le \delta(1 - 2^{-n})$ and S - T is finite rank. Thus $\frac{1}{2} < N(T, B) < 2$ and $||Tz|| \ge \frac{1}{4}$.

Let $\hat{T} \in \mathscr{L}(X, Y)$ be the operator given by

$$\hat{T}x = Tx + 2^{-n-2}\delta f(x) Tz.$$

Then $||T - \hat{T}|| \le 2^{-n-1}\delta$ and hence $||S - \hat{T}|| \le \delta(1 - 2^{-n-1})$. Obviously $S - \hat{T}$ is still a finite rank operator. By hypothesis $\hat{T} \notin A_{\varepsilon}$ and thus there is some $x \in B$ with $x \notin B(p, \varepsilon) \cup B(-p, \varepsilon)$ and $||\hat{T}x|| \ge N(\hat{T}, B) - 4^{-n-1}\delta^2$. Clearly $x \in V_{n+1}$ and thus $x \in D$.

But
$$||Tx|| + 2^{-n-2}\delta ||f(x)|| Tz|| \ge ||\hat{T}z|| - 4^{-n-1}\delta^2$$
 implying
 $(1 + 2^{-n-2}\delta ||f(x)||) ||Tz|| \ge (1 + 2^{-n-2}\delta f(z)) ||Tz|| - 24^{-n}\delta^2.$

Therefore $|f(x)| \ge f(z) - 2^{-n+5}\delta$, which contadicts $f(z) \ge |f(x)| + \kappa 2^{-n}$. This proves the claim.

From the claim, it follows that the sequence $(V_n)_n$ of nonempty sets in $X, \varepsilon > 0$ and $\kappa > 0$ satisfy the condition of Lemma 3. Thus $A = \bigcap_{n=0}^{\infty} \overline{\bigcup_{j \ge n} c(V_j)}$ is nonempty and not dentable. The fact that $A \subset B$ yields the final contradiction.

We introduce the following definition. Let B be a nonempty, bounded, closed and absolutely convex subset of X. Let Y be a Banach space and $T \in \mathcal{L}(X, Y)$. We will say that T is an absolutely strongly exposing operator for the set B if there exists some point x in B such that every sequence $(x_n)_n$ in B satisfying $N(T, B) = \lim_{n \to \infty} ||Tx_n||$ has a subsequence coverging to x or to -x. Using a compactness argument, we observe that $T \in \mathcal{L}(X, Y)$ is an absolutely strongly exposing operator for the set B if and only if $T \in A_{\varepsilon}$, for every $\varepsilon > 0$, where A_{ε} is defined as in Lemma 4. Obviously such an operator T achieves its max norm N(T, B) on B.

THEOREM 5. Let B be a nonempty, bounded, closed and absolutely convex subset of X. Assume that every nonempty subset of B is dentable. Then for any Banach space Y the set A of the absolutely strongly exposing operators $T \in$ $\mathcal{L}(X, Y)$ for the set B is a dense G_{δ} -subset of $\mathcal{L}(X, Y)$. In fact, if $S \in \mathcal{L}(X, Y)$ and $\delta > 0$, there is $T \in A$ such that $||S - T|| \leq \delta$ and S - T is a compact operator. PROOF. Clearly B can be taken in the unit ball of X. For each $n \in \mathbb{N}^*$, we consider the subset $A_{1/n}$ of $\mathscr{L}(X, Y)$, which is open.

Indeed, assume $T \in A_{1/n}$ and let $S(T, \eta) \subset B(p, 1/n) \cup B(-p, 1/n)$ for some $\eta > 0$ and some $p \in X$. Then, if $U \in \mathcal{L}(X, Y)$ and $||T - U|| < \eta/3$, we have $S(U, \eta/3) \subset S(T, \eta)$ and therefore $U \in A_{1/n}$.

Since $A = \bigcap_{n} A_{1/n}$, it follows from Lemma 4 that A is a dense G_{δ} in $\mathscr{L}(X, Y)$.

Now assume $S \in \mathcal{L}(X, Y)$ and $\delta > 0$. Let φ be the set of the compact operators C in $\mathcal{L}(X, Y)$ such that $||C|| \le \delta$. Then $S + \varphi$ is closed in $\mathcal{L}(X, Y)$ and again from Lemma 4 we obtain that $(S + \varphi) \cap A_{1/n}$ is dense in $S + \varphi$ for each $n \in \mathbb{N}^*$. Therefore A intersects $S + \varphi$ and every operator T in the intersection verifies the required properties.

COROLLARY 6. Let B be a nonempty, bounded, closed and absolutely convex subset of X. Assume that every nonempty subset of B is dentable. Then for any Banach space Y the set of those operators $T \in \mathcal{L}(X, Y)$ which attain their max norm N(T, B) on B is dense in $\mathcal{L}(X, Y)$. Hence B has the Bishop-Phelps property.

Finally, Corollary 2 and Corollary 6 together give:

THEOREM 7. A Banach space X has the Bishop-Phelps property if and only if it has RNP.

We end with a result on the strongly exposing functionals of a convex set. Let C be a convex set in the Banach space X, then we will say that the point $x \in C$ is strongly exposed by $x^* \in X'$ if $x^*(x) = \max x^*(C)$ and if $||x - x_n|| \to 0$ whenever each x_n is in C and $x^*(x_n) \to x^*(x)$. It was shown by R. R. Phelps [8] that if X is an RNP-space and C a bounded, closed and convex subset of X, then the functionals that strongly expose some point of C form a dense G_{δ} -subset of the dual X'.

The following theorem is stronger than Phelps' result and it also generalizes the well-known Troyanski–Lindenstrauss result on weakly compact convex sets [10].

THEOREM 8. Let C be a nonempty, bounded, closed and convex subset of the Banach space X. Assume that every nonempty subset of C is dentable. Then the strongly exposing functionals of C form a dense G_8 -subset of X'.

Using the same argument as in Theorem 5, Theorem 8 follows immediately from a slight modification of Lemma 4:

LEMMA 4'. For $\varepsilon > 0$, let $A_{\varepsilon} = \{x^* \in X', S(x^*, \eta) \subset B(p, \varepsilon) \text{ for some } \eta > 0$ and $p \in X\}$, where $S(x^*, \eta) = \{x \in C; x^*(x) \ge \sup x^*(C) - \eta\}$. Then A_{ε} is dense in X'.

The proof of Lemma 4' is essentially the same as that of Lemma 4. We give an outline of it.

Assume C contained in the unit ball of $X, 0 < \delta < \frac{1}{2}, x^* \in X'$ and $\sup x^*(C) = 1$.

Now suppose that for every $y^* \in X'$ satisfying $||x^* - y^*|| < \delta$ we have $y^* \notin A_{\epsilon}$.

For each $n \in \mathbb{N}$, let V_n be the set of those $x \in C$ for which there exists $y^* \in X'$ such that $y^*(x) \ge \sup y^*(C) - 4^{-n}\delta^2$ and $||x^* - y^*|| \le \delta(1 - 2^{-n})$.

The only thing to show is that if $z \in V_n$ and $p \in X$, then dist $(z, c(V_{n+1} \setminus B(p, \varepsilon))) < \kappa 2^{-n}$, where $\kappa = 2^{\circ}\delta$. If not, then we consider the set $D = V_{n+1} \setminus B(p, \varepsilon)$ and take $f \in X'$ satisfying ||f|| = 1 and $f(z) \ge \sup f(D) + \kappa 2^{-n}$. Because $z \in V_n$, there is $y^* \in X'$ such that $y^*(z) \ge \sup y^*(C) - 4^{-n}\delta^2$ and $||x^* - y^*|| \le \delta(1 - 2^{-n})$. Thus $\frac{1}{2} \le \sup y^*(C) \le 2$ and $y^*(z) \ge \frac{1}{4}$.

Let $z^* \in X'$ be given by

$$z^{*}(x) = y^{*}(x) + 2^{-n-2}\delta f(x)y^{*}(z).$$

Then $||z^* - y^*|| \le 2^{-n-1}\delta$ and hence $||x^* - z^*|| \le \delta(1 - 2^{-n-1})$. By hypothesis $z^* \notin A_{\varepsilon}$ and thus there is some $x \in C$ with $x \notin B(p, \varepsilon)$ and $z^*(x) \ge \sup z^*(C) - 4^{-n-1}\delta^2$.

Clearly $x \in V_{n+1}$ and thus $x \in D$. But

$$y^{*}(x) + 2^{-n-2}\delta f(x)y^{*}(z) \ge z^{*}(z) - 4^{-n-1}\delta^{2}$$

implying $(1+2^{-n-2}\delta f(x))y^*(z) \ge (1+2^{-n-2}\delta f(z))y^*(z) - 24^{-n}\delta^2$. Therefore $f(x) \ge f(z) - 2^{-n+5}\delta$, which contradicts $f(z) \ge f(x) + \kappa 2^{-n}$.

References

1. E. Bishop and R. R. Phelps, The support functionals of a convex set, Proc. Symp. Pure Math. 7, (Convexity) 27-35.

2. W. J. Davis and R. R. Phelps, *The Radon-Nikodym propoerty and dentable sets in Banach spaces*, Proc. Amer. Math. Soc. **45** (1974), 119-122.

3. J. Diestel, Geometry of Banach Spaces-Selected Topics, Springer-Verlag 485, 1975.

4. R. E. Huff, Dentability and the Radon-Nikodym property, Duke Math. J. 41 (1974), 111-114.

5. R. E. Huff and P. Morris, Geometric characterizations of the Radon-Nikodym property in Banach spaces.

6. J. Lindenstrauss, On operators which attain their norm, Israel J. Math. 1 (1963), 139-148.

7. H. Maynard, A geometric characterization of Banach spaces possessing the Radon-Nikodym property, Trans. Amer. Math. Soc. 185 (1973), 493-500.

8. R. R. Phelps, Dentability and extreme points in Banach spaces, J. Functional Analysis, (1974).

9. M. A. Rieffel, Dentable subsets of Banach spaces, with applications to a Radon-Nikodym theorem, Proc. Conf. Functional Analysis, Thompson Book Co., Washington, D.C., 1967, pp. 71-77.

10. S. L. Troyanski, On locally uniformely convex and differentiable norms in certain non-separable Banach spaces, Studia Math. 37 (1971), 173-180.

DEPARTMENT OF MATHEMATICS VRIJA UNIVERSITEIT BRUSSELS, BELGIUM